Test ID CYPPS 21-Hydroxylase Gene (CYP21A2), Full Gene Analysis
Useful For
Carrier screening and diagnosis of 21-hydroxylase deficient congenital adrenal hyperplasia (CAH) as follow-up to positive CAH newborn screens and/or measurement of basal and adrenocorticotropic hormone- 1-24 stimulated 17-hydroxyprogesterone, androstenedione, and other adrenal steroid levels
May be used to identify CYP21A2 mutations in individuals with a suspected diagnosis of 21-hydroxylase deficient CAH when a common mutation panel is negative or only identifies 1 mutation
Profile Information
Test ID | Reporting Name | Available Separately | Always Performed |
---|---|---|---|
CYPMS | CYP21A2 Full Gene Analysis | No | Yes |
Special Instructions
Method Name
Polymerase Chain Reaction (PCR) Amplification/DNA Sequencing and Deletion Detection by Multiplex Ligation-Dependent Probe Amplification (MLPA)
(PCR is utilized pursuant to a license agreement with Roche Molecular Systems, Inc.)
Reporting Name
CYP21A2 Full Gene AnalysisSpecimen Type
Whole Blood EDTAContainer/Tube: Lavender top (EDTA)
Specimen Volume: 3 mL
Collection Instructions: Send specimen in original tube.
Forms:
1. CYP21A2 Gene Testing Patient Information Sheet (T663) in Special Instructions
2. New York Clients-Informed consent is required. Please document on the request form or electronic order that a copy is on file. An Informed Consent for Genetic Testing (T576) is available in Special Instructions.
Specimen Minimum Volume
0.2 mL
Specimen Stability Information
Specimen Type | Temperature | Time |
---|---|---|
Whole Blood EDTA | Refrigerated (preferred) | |
Ambient | ||
Frozen |
Clinical Information
Congenital adrenal hyperplasia (CAH), with an incidence rate of 1 in 10,000 to 18,000 live births, is one of the most common inherited syndromes. The condition is characterized by impaired cortisol production due to inherited defects in steroid biosynthesis. The clinical consequences of CAH, besides diminished cortisol production, depend on which enzyme is affected and whether the loss of function is partial or complete.
In >90% of CAH cases, the affected enzyme is 21-steroid hydroxylase, encoded by the CYP21A2 gene located on chromosome 6 within the highly recombinant human histocompatibility complex locus. Since sex steroid production pathways branch off proximal to this enzymatic step, affected individuals will have increased sex steroid levels. If there is some residual enzyme activity, a nonclassical phenotype results, with variable degrees of masculinization starting in later childhood or adolescence. On the other end of the spectrum are patients with complete loss of 21-hydroxylase function. This leads to both cortisol and mineral corticosteroid deficiency and is rapidly fatal if untreated due to loss of vascular tone and salt wasting.
Because of its high incidence rate, 21-hydroxylase deficiency is screened for in most US newborn screening programs, typically by measuring 17-hydroxyprogesterone concentrations in blood spots by immunoassay. Confirmation by other testing strategies (eg, LC-MS/MS, CAHBS / Congenital Adrenal Hyperplasia [CAH] Newborn Screening, Blood Spot), or retesting after several weeks, is required for most positive screens because of the high false-positive rates of the immunoassays (due to physiological elevations of 17-hydroxyprogesterone in premature babies and immunoassay cross-reactivity with other steroids). In a small percentage of cases, additional testing will fail to provide a definitive diagnosis. In addition, screening strategies can miss many nonclassical cases, which may present later in childhood or adolescence and require more extensive steroid hormone profiling, including testing before and after adrenal stimulation with adrenocorticotropic hormone (ACTH)-1-24.
For these reasons, genetic diagnosis plays an important ancillary role in both classical and nonclassical cases. In addition, the high carrier frequency (approximately 1 in 50) for CYP21A2 mutations makes genetic diagnosis important for genetic counseling. Genetic testing can also play a role in prenatal diagnosis of 21-hydroxylase deficiency. However, accurate genetic diagnosis continues to be a challenge because most of the mutations arise from recombination events between CYP21A2 and its highly homologous pseudogene, CYP21A1P (transcriptionally inactive). In particular, partial or complex rearrangements (with or without accompanying gene duplication events), which lead to reciprocal exchanges between gene and pseudogene, can present severe diagnostic challenges. Comprehensive genetic testing strategies must therefore allow accurate assessment of most, or all, known rearrangements and mutations, as well as unequivocal determination of whether the observed changes are located within a potentially transcriptionally active genetic segment. Testing of additional family members is often needed for clarification of genetic test results.
Reference Values
An interpretive report will be provided.
Cautions
Because of the complexity of the genetic structure of the CYP21A2 locus, and the possibility that a patient's congenital adrenal hyperplasia (CAH) may be due to other gene defects, genetic testing results should be correlated carefully with clinical and biochemical data.
This testing strategy is superior to approaches previously used, but may still miss some complex and large-scale genetic rearrangements or deletions, as well as genetic changes in far upstream or downstream gene-regulatory elements that impair CYP21A2 gene expression. This can lead to false-negative test results.
Rare polymorphisms in primer binding sites can lead to selective allelic drop-out, which can lead to false-negative or false-positive diagnosis.
Patients without genetic evidence for disease-causing CYP21A2 genetic changes may still have CAH, but due to a different enzyme defect. Additional and expanded biochemical steroid profiling is, therefore, recommended if the clinical picture is strongly suggestive of CAH.
Day(s) Performed
Monday; 8 a.m.
Report Available
12 daysPerforming Laboratory

CPT Code Information
81405-CYP21A2 (cytochrome P450, family 21, subfamily A, polypeptide2) (eg, steroid 21-hydroxylase isoform, congenital adrenal hyperplasia), full gene sequence
81402-CYP21A2 (cytochrome P450, family 21, subfamily A, polypeptide2) (eg, congenital adrenal hyperplasia, 21-hydroxylase deficiency), common variants (eg, IVS2-13G, P30L, I172N, exon 6 mutation cluster [I235N, V236E, M238K], V281L, L307FfsX6, Q318X, R356W, P453S, G110VfsX21, 30-kb deletion variant)