Test ID DHEAN Dehydroepiandrosterone (DHEA), Serum
Useful For
Diagnosing and differential diagnosis of hyperandrogenism (in conjunction with measurements of other sex steroids)
An initial screen in adults might include dehydroepiandrosterone (DHEA)/dehydroepiandrosterone sulfate (DHEAS) and bioavailable testosterone measurement. Depending on results, this may be supplemented with measurements of sex hormone-binding globulin and occasionally other androgenic steroids (eg, 17-hydroxyprogesterone).
An adjunct in the diagnosis of congenital adrenal hyperplasia (CAH); DHEA/DHEAS measurements play a secondary role to the measurements of cortisol/cortisone, 17 alpha-hydroxyprogesterone, and androstenedione.
Diagnosing and differential diagnosis of premature adrenarche
Testing Algorithm
See Steroid Pathways in Special Instructions.
Special Instructions
Method Name
Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS)
Reporting Name
Dehydroepiandrosterone, SSpecimen Type
SerumCollection Container/Tube:
Preferred: Red top
Submission Container/Tube: Plastic vial
Specimen Volume: 1 mL
Additional Information: Patient's age and sex are required.
Specimen Minimum Volume
0.45 mL
Specimen Stability Information
Specimen Type | Temperature | Time |
---|---|---|
Serum | Frozen (preferred) | 28 days |
Refrigerated | 21 days | |
Ambient | 6 hours |
Clinical Information
Dehydroepiandrosterone (DHEA) is the principal human C-19 steroid. DHEA has very low androgenic potency, but serves as the major direct or indirect precursor for most sex steroids. DHEA is secreted by the adrenal gland and production is at least partly controlled by adrenocorticotropic hormone (ACTH). The bulk of DHEA is secreted as a 3-sulfoconjugate dehydroepiandrosterone sulfate (DHEAS). Both hormones are albumin bound, but DHEAS binding is much tighter. As a result, circulating concentrations of DHEAS are much higher (>100-fold) compared to DHEA. In most clinical situations, DHEA and DHEAS results can be used interchangeably. In gonads and several other tissues, most notably skin, steroid sulfatases can convert DHEAS back to DHEA, which can then be metabolized to stronger androgens and to estrogens.
During pregnancy, DHEA/DHEAS and their 16-hydroxylated metabolites are secreted by the fetal adrenal gland in large quantities. They serve as precursors for placental production of the dominant pregnancy estrogen, estriol. Within weeks after birth, DHEA/DHEAS levels fall by 80% or more and remain low until the onset of adrenarche at age 7 or 8 in girls and age 8 or 9 in boys. Adrenarche is a poorly understood phenomenon peculiar to higher primates, that is characterized by a gradual rise in adrenal androgen production. It precedes puberty, but is not casually linked to it. Early adrenarche is not associated with early puberty or with any reduction in final height or overt andro-genization. However, girls with early adrenarche may be at increased risk of polycystic ovarian syndrome as adults and some boys may develop early penile enlargement.
Following adrenarche, DHEA/DHEAS levels increase until the age of 20 to a maximum roughly comparable to that observed at birth. Levels then decline over the next 40 to 60 years to around 20% of peak levels. The clinical significance of this age-related drop is unknown and trials of DHEA/DHEAS replacement in the elderly have not produced convincing benefits. However, in young and old patients with primary adrenal failure, the addition of DHEA/DHEAS to corticosteroid replacement has been shown in some studies to improve mood, energy, and sex drive.
Elevated DHEA/DHEAS levels can cause symptoms or signs of hyperandrogenism in women. Men are usually asymptomatic, but through peripheral conversion of androgens to estrogens can occasionally experience mild estrogen excess. Most mild-to-moderate elevations in DHEAS levels are idiopathic. However, pronounced elevations of DHEA/DHEAS may be indicative of androgen-producing adrenal tumors. In small children, congenital adrenal hyperplasia (CAH) due to 3 beta-hydroxysteroid dehydrogenase deficiency is associated with excessive DHEA/DHEAS production. Lesser elevations may be observed in 21-hydroxylase deficiency (the most common form of CAH) and 11 beta-hydroxylase deficiency. By contrast, steroidogenic acute regulatory protein (STAR) or 17 alpha-hydroxylase deficiency is characterized by low DHEA/DHEAS levels.
See Steroid Pathways in Special Instructions.
Reference Values
Premature: <4,000 ng/dL*
0-1 day: <1,100 ng/dL*
2-6 days: <870 ng/dL*
7 days-1 month: <580 ng/dL*
>1 month-23 months: <290 ng/dL*
2-5 years: <230 ng/dL
6-10 years: <340 ng/dL
11-14 years: <500 ng/dL
15-18 years: <660 ng/dL
19-30 years: <1,300 ng/dL
31-40 years: <1,000 ng/dL
41-50 years: <800 ng/dL
51-60 years: <600 ng/dL
≥61 years: <500 ng/dL
*Source: Dehydroepiandrosterone. In Pediatric Reference Ranges. Fifth edition. Edited by SJ Soldin, C Brugnara, EC Wong. Washington, DC, AACC Press, 2005, p 75
Cautions
Currently the correlation of serum dehydroepiandrosterone (DHEA)/dehydroepiandrosterone sulfate (DHEAS) level with human well-being or disease risk factors have not been completely established.
There are currently no established guidelines for DHEA/DHEAS replacement/supplementation therapy or its biochemical monitoring. In most settings, the value of DHEA/DHEAS therapy is doubtful. However, if DHEAS therapy is used, then it seems prudent to avoid overtreatment, with its associated hyperandrogenic effects. These are particularly likely to occur in postmenopausal females if DHEA/DHEAS levels approach or exceed the upper reference range. Most supplements contain DHEA, but the in vivo conversion to DHEAS allows monitoring of either DHEA or DHEAS.
Day(s) Performed
Monday through Friday; 9 a.m.
Report Available
2 daysPerforming Laboratory

Test Classification
This test was developed and its performance characteristics determined by Mayo Clinic in a manner consistent with CLIA requirements. This test has not been cleared or approved by the U.S. Food and Drug Administration.CPT Code Information
82626